Pandas DataFrame Copy Function with Examples

Introduction

In this article, we will cover how to use the Pandas Copy function to copy DataFrames along with syntax and examples.

Syntax of Pandas Copy Function | pandas.DataFrame.copy

The Pandas Copy  function is part of the DataFrame class and follows a simple syntax:

DataFrame.copy(deep=True)

  • deep :  This parameter specifies whether to create a deep copy or a shallow copy of the DataFrame. By default, it is set to True for a deep copy.

Example – 1: Copy Pandas DataFrame with Deep = False

In this example, we first create a sample Data Frame and copy it to the second Data Frame using the copy() function with Deep = False parameter. Next, we modify the second Data Frame which in turn also modifies the original Data Frame. This is because due to Deep = False parameter, a shallow copy of the second data frame is created that references the original Data Frame only.

In [0]:

import pandas as pd

# Creating a DataFrame
data = {'Name': ['John', 'Alice', 'Bob'],
'Age': [28, 24, 22]}

df_original = pd.DataFrame(data)

# Displaying original
print(" Original DataFrame Before:\n", df_original)

# Creating a shallow copy
df_shallow_copy = df_original.copy(deep=False)

# Modifying the copied DataFrame
df_shallow_copy['Age'][0] = 30

# Displaying original and copied DataFrames
print("\n Shallow Copy DataFrame:\n", df_shallow_copy)
print("\n Original DataFrame After:\n", df_original)
Out[0]:
 Original DataFrame Before:
     Name  Age
0  John   28
1  Alice   24
2  Bob   22

 Shallow Copy DataFrame:
     Name  Age
0  John   30
1  Alice   24
2  Bob   22

 Original DataFrame After:
     Name  Age
0  John   30
1  Alice   24
2  Bob   22

Example – 2: Copy Pandas DataFrame with Deep = True

In this example, we copy the sample Data Frame to the second Data Frame using the copy() function with Deep = True parameter. But unlike the shallow copy, modifying the deep copy does not affect the original Data Frame. This is because the deep copy creates a completely new copy of the objects that does not reference to original Data Frame.

In [1]:

import pandas as pd

# Creating a DataFrame
data = {'Name': ['John', 'Alice', 'Bob'],
        'Age': [28, 24, 22]}

df_original = pd.DataFrame(data)

print(" Original DataFrame Before:\n", df_original)

# Creating a deep copy
df_deep_copy = df_original.copy(deep=True)

# Modifying the copied DataFrame
df_deep_copy['Age'][0] = 30

# Displaying original and copied DataFrames
print("\n Deep Copy DataFrame:\n", df_deep_copy)
print("\n Original DataFrame After:\n", df_original)
Out[1]:
 Original DataFrame Before:
     Name  Age
0   John   28
1  Alice   24
2    Bob   22

 Deep Copy DataFrame:
     Name  Age
0  John   30
1  Alice   24
2  Bob   22

 Original DataFrame After:
     Name  Age
0  John   28
1  Alice   24
2   Bob   22

Example – 3: Copy Pandas DataFrame Column To Another DataFrame

In this example, we show how to copy specific Pandas Data Frame columns to another Data Frame. This can be done by specifying the column names of the original Data Frame while invoking the copy() function.

In [2]:

import pandas as pd

# Creating a DataFrame
data = {'Name': ['John', 'Alice', 'Bob'],
        'Age': [28, 24, 22],
        'City': ['New York', 'San Francisco', 'Chicago']}

df_original = pd.DataFrame(data)

# Creating a copy with selected columns
df_copy_selected_columns = df_original[['Name', 'Age']].copy()

# Displaying original and copied DataFrames
print("Original DataFrame:\n", df_original)
print("\nCopy with Selected Columns:\n", df_copy_selected_columns)
Out[2]:
Original DataFrame:
     Name  Age           City
0  John   28       New York
1  Alice   24  San Francisco
2  Bob   22        Chicago

Copy with Selected Columns:
     Name  Age
0  John   28
1  Alice   24
2  Bob   22

 

  • MLK

    MLK is a knowledge sharing community platform for machine learning enthusiasts, beginners and experts. Let us create a powerful hub together to Make AI Simple for everyone.

    View all posts

Follow Us

Leave a Reply

Your email address will not be published. Required fields are marked *