Intel and MIT create Neural Network that can improve Code

Intel and MIT create Neural Network that can improve Code

Introduction

Scientists from Georgia Tech in collaboration with MIT and support from Intel have designed a neural network-driven engine that looks at a piece of code and identifies similarities or differences in the same comparing it with any other code having the same logic. It then points out bugs or suggests a better way to write the program.

Machines Now Help Write Code

Researchers from Intel, Massachusetts Institute of Technology and Georgia Institute of Technology have announced a new machine programming system designed to detect code similarity. The Machine Inferred Code Similarity (MISIM) system, as they call it, is an automated engine capable of determining when two pieces of code, data structures of algorithms perform the same or similar tasks. 

According to the researchers, hardware and software systems are increasingly becoming more and more complex. That, coupled with the shortage of programmers necessary to develop the hardware and software systems, has highlighted a need for a new development approach. 

The idea of machine programming, which was coined by Intel Labs and MIT, is to improve development productivity through the usage of automated tools.

Why Does It Matter?

“Intel’s ultimate goal for machine programming (MP) is to democratize the creation of software. When fully realized, MP will enable everyone to create software by expressing their intention in whatever fashion that’s best for them, whether that’s code, natural language, or something else. That’s an audacious goal, and while there’s much more work to be done, MISIM is a solid step toward it,” said Josh Gottschlich, principal scientists and director/founder of machine programming research at Intel. 

Ad
Deep Learning Specialization on Coursera

The researchers explained MISIM differs from other code similarity systems because it uses a context-aware semantic structure (CASS) which provides more insight into what code does, not just how it does it. Other code similarly systems try to determine similar characteristics or similar goals while MISIM can determine code that performs similar computations. “This is an important step toward the grander vision of machine programming,” Gottschlich said.

How Does It Work?

Additionally, MISIM does not require a compiler to translate human-readable source code to computer-executable machine code. “This has many benefits over existing systems, including the ability to execute on incomplete snippets of code that a developer may be currently writing – an important practical characteristic for recommendation systems or automated bug fixing,” according to the announcement of the system. “Once the code’s structure is integrated into CASS, neural network systems give similarity scores to pieces of code based on the jobs they are designed to carry out. In other words, if two pieces of code look very different in their structure but perform the same function, the neural networks would rate them as largely similar.”

The researchers also state MISIM can identify similar pieces of code 40 times more accurately than prior systems. 

Does it Mean We Should Stop Coding?

Going forward, the researchers plan to expand the solution’s feature set, develop a code recommendation engine, and engage with other software groups to see how MISIM can be integrated into day-to-day development. “I imagine most developers would happily let the machine find and fix bugs for them if it could – I know I would,” Gottschlich added.

But does it mean, all coding should be taken over by the machines? Not just yet. If we understand it correctly, for now, this system is only reading programs and comparing it with what it knows. The AI will then suggest if there are better ways to write the program or try to remove bugs from the submitted program.

Final Word

Allowing AI and machines to code on their own may be the best thing that ever happened to programming. On the flip-side, how does one account for machines taking over everything? Of course, that happens only in movies…..!

Like and Comment section (Community Members)

Create Your ML Profile!

Don't miss out to join exclusive Machine Learning community

Comments

No comments yet